
INTRODUCTION TO MULTIPLICITY THEORY

ILYA SMIRNOV

1. Dimension theory and existence of multiplicity

1.1. Definitions.

Definition 1.1. We will use (R,m) to denote a local ring: R is commutative, Noetherian
ring such that the set of all non-invertible elements forms an ideal, denoted m.

It follows that R/m is a field, so m is the unique maximal ideal of R. Examples: 1) the
localization of any commutative, Noetherian ring at a prime ideal, e.g., the localization of
K[x1, . . . , xd] at (x1, . . . , xd) where K is a field. 2) R = K[[T1, . . . , Td]] and quotients of it.
3) Geometrically: the ring of germs of functions at a point.

Definition 1.2. Let (R,m) be a local ring. An ideal I is m-primary if mn ⊆ I for some n.

Examples: I = (x, y2) ⊂ R = k[[x, y]]. We have m2 ⊂ I.

Definition 1.3. Recall that the length of an R-module is defined as

`(M) = max{L | there is a chain 0 = M0 (M1 (ML = M}.

It was proven in the Atiyah–MacDonald book ([1, Proposition 6.8]) that `(M) <∞ if and
only if M is Artinian and Noetherian. It follows that an ideal I of a local ring is m-primary
if and only if R/I has finite length.

For example: if I = (x, y2) ⊂ R = k[[x, y]] then `(R/I) = 2 because I ⊂ m ⊂ R is a
saturated chain. Alternatively, `(R/I) = dimk R/I = 2 as we can use [1, Proposition 6.10]
and the following remark.

Remark 1.4. In a module of finite length, if we take any maximal chain of submodules, then
its length is the length of M1. By maximality in any such chain Mi+1/Mi

∼= R/mi, where mi

is a maximal ideal. Thus `(M) =
∑

m `Rm(Mm), where m varies through all maximal ideals.
Thus, in general little is lost by working in local rings.

We also recall the main property of the length.

Proposition 1.5 ([1, Proposition 6.9]). Let R be a commutative ring. Let 0→M1 →M2 →
M3 → 0 be an exact sequence of finite length R-modules. Then `(M2) = `(M1) + `(M3).

Definition 1.6. Let (R,m) be a local ring and I be an m-primary ideal. The Hilbert–Samuel
multiplicity of I is defined as

e(I) = (dimR)! lim
n→∞

`(M/InM)

ndimR
,

1[1, Proposition 6.7]
1
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here dimR is the Krull dimension: the length of the longest chain of the prime ideals
p0 ( p1 ( · · · ( pL.

We will now work to prove that this limit exists.

1.2. Graded rings and Hilbert’s polynomials.

Definition 1.7. We will say that a commutative and unital ring G is graded if it has a
decomposition G = ⊕i≥0Gi where Gi are abelian group (with respect to addition) such that
Gi ×Gj ⊆ Gi+j. We will use notation G• to specify the pieces.

Similarly, a graded module M over a graded ring G• is a G•-module which can be decom-
posed as a direct sum M =

∑
i∈ZMi of abelian groups such that GiMj ⊆Mi+j.

It follows from the definition that G0 is a ring and Mi are G0-modules. Recall that a
Noetherian and Artinian module has finite length. Thus, if G0 is an Artinian ring and Gi

are finitely generated G0-modules, then Gn have finite length as G0-modules. Our goal is to
study how `(Gn) depends on n.

Example 1.8. Let R be a ring. A polynomial ring G = R[T1, . . . , Td] is graded by the usual
degree:

Gi := {homogeneous polynomials of degree i}.
We can also make graded G-modules by twisting the grading: G(`)i = G`+i defines a new

graded module.

This motivates the following notation.

Definition 1.9. An element x of a graded ring is homogeneous if it belongs to one of the
graded pieces Gi. An ideal I of a graded ring is homogeneous if it can be generated by
homogeneous elements (not necessarily of same degree).

Example 1.10. In a polynomial ring k[x, y] with the usual grading, ideals (x, y2), (x2 + y2)
are homogeneous, while (x+ 1), (x2 + y) are not.

Exercise 1.11. If m ∈Mi is a homogeneous element, then Annm := {x ∈ G• | xm = 0} is
a homogeneous ideal.

Definition 1.12. A (graded) homomorphism of graded G•-modules M• and N• is a homo-
morphism f : M• → N• as non-graded modules that preserves the grading: f(Mi) ⊆ Ni.

We will need the existence of graded prime filtrations.

Lemma 1.13. Let M be a finitely generated graded module over a Noetherian graded ring
G•. There exists a filtration 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nr = M of graded submodules such that
Ni/Ni−1 ∼= (S/pi)(`i), where pi is a homogeneous prime ideal and `i ∈ Z.

Proof. First, we claim that M has a homogeneous associated prime. Consider a maximal
element p of the set of ideals of the form Annx where 0 6= x ∈M is homogeneous. We claim
that p is prime.

Suppose that ab ∈ p = Annm and write their decomposition in the homogeneous compo-
nents a =

∑
ai, b =

∑
bi. We can write ab =

∑
fkxk, where xi are a system of homogeneous
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generators of M . If ai0 , bj0 are smallest degree nonzero components of a and b, we can sepa-
rate the terms of degree i0 + j0 in ab to see that ai0bj0 ∈ p. Thus it suffices to assume that
a, b are homogeneous: if we prove that ai0 , bj0 ∈ p, we remove them and continue.

Now, if b /∈ p, then p ⊆ Ann bm, so they must be equal by maximality. Because, a·bm = 0,
a ∈ p. This finishes the claim.

Second, define a map (S/p)(− degm) to M by sending 1→ m. This map is an inclusion
because p = Annm and it is an inclusion of graded modules due to the shift. Thus, we may
let N1 = (S/p)(− degm)- And proceed to build N2 by induction, by taking an associated
prime in M/Ni we find Ni+1. This process terminates by the Noetherian assumption. �

Remark 1.14. This is essentially the same proof that is used to prove existence of prime
filtrations for non-graded modules. This result is recovered by giving R and M zero grading.

Theorem 1.15 (Hilbert). Let G• be a graded ring such that

(1) A = G0 is an Artinian ring,
(2) G1 is a finitely generated G0-module,
(3) G is generated by G1 as an algebra over G0.

Then for any finitely generated graded G•-module M• there exists a polynomial P (T ) ∈ Q[T ]
and an integer N such that `A(Mn) = P (n) for all n ≥ N .

Proof. By definition of graded homomorphism, an exact sequence of graded modules

0→ L→M → N → 0

gives the equality `A(Mn) = `A(Nn) + `A(Ln). Thus Lemma 1.13 shows that it suffices to
prove the theorem for M = (G/p)(`), since `A(M(`)n) = `A(Mn+`) it suffices to consider
M = G/p.

If p contains all of ⊕i≥1Gi, then M = G/p has nothing in positive degree, so `A(Mn) = 0
for n ≥ 1 in this case. Note that in this case dimM = 0, we set 0 to have degree −1 by
convention.

Otherwise, there is a homogeneous element x /∈ p of positive degree 1. We then have the
exact sequence

0→ (G/p)(−1)
17→x−−→ G/p→ G/(p, x)→ 0

which gives that

`A((G/(p, x))n) = `A((G/(p))n)− `A((G/(p)n−1).

It is not hard to check, that if `A((G/(p, x))n) is given by a polynomial f(T ) of degree d then

`A((G/(p))n) = `A((G/(p))n0) +
n∑

k=n0

f(n)

is a polynomial2 of degree d+ 1 for large n.
This allows us to finish the proof by induction on `A(G1). Namely, since x ∈ G1,

`A(G/(p, x))1) < `A(G1). �

2One can use the binomial coefficients to see this, see below.
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1.2.1. Coefficients of the Hilbert polynomial. If G is not artinian, `A(Gi) > 0, so the Hilbert
polynomial has positive leading coefficient. But, this polynomial also take integer values
so it has a special representation. To do so, I want to recall a few properties of binomial
coefficients:

(1) n 7→
(
n+d
d

)
is a polynomial in n of degree d. By expansion its leading coefficients are

1
d!
nd + d+1

2(d−1)!n
d−1 + · · · .

(2) Polynomials
(
n+k
k

)
, 0 ≤ k ≤ d form a basis of the vector space of polynomials of

degree at most d.
(3) Polynomials

(
n+d
d

)
, d ≥ 1, take only positive integer values if n ∈ Z>0.

(4) We have a recurrence identity
(
n
d

)
−
(
n−1+d

d

)
=
(
n+d−1
d−1

)
.

Proposition 1.16. In the setting of Theorem 1.15 we may write the Hilbert polynomial
P (T ) as n 7→ `A(Gi) as

P (T ) =
d∑

k=0

ek

(
T + d− k
d− k

)
where d is the degree of P (T ) and ek are integers, called Hilbert coefficients. Moreover, if
d ≥ 0, then the leading coefficient e0 is positive.

Proof. This can be proven as a part of Hilbert’s theorem by following its proof by using the
recurrence for binomial coefficients. We know that the leading coefficient is positive because
the values at all large integers are positive.

Alternatively, this is true more generally. If the value of P (n) are integers for n ∈ Zn≥n0 ,
then we obtain that P (t) ∈ Q[t] (say by interpolation formulas). The polynomials

(
t+i
i

)
form

a basis of Q[t], so there is a decomposition with ek ∈ Q. Then one can use the condition on
the values and the induction that ek. �

1.3. Constructions of graded rings. The proof of the Hilbert theorem gives a bound
`(G1) on the degree of the polynomial, but we aim to show that it is equal to dimG−1. But
first we connect Hilbert’s theorem to multiplicity. To do so we introduce two construction
of graded rings from a local ring.

1.3.1. Rees algebra and Artin–Rees lemma. In the following we will need to use several times
the Artin–Rees lemma, so let me give you a proof. This is largely same as [1, Proposition 10.9]

Proposition 1.17 (Artin–Rees). Let A be a Noetherian ring, I be an ideal, M be a finitely
generated A-module, and M ′ be its submodule. Then there exists an integer c such that
InM ∩M ′ = In−c(IcM ∩M ′)

Proof. First, consider the ring R[IT ] = ⊕nInT n ⊆ R[T ], where T is a formal variable3.
This is a graded ring. Since R is Noetherian, there are finitely many elements a1, . . . , am
that generate I then a1T, . . . , amT generate R(I) as an algebra over R. So R[IT ] is also
Noetherian.

3The variable T helps us to distinguish the element, this way we can distinguish I ⊆ R from IT , the
degree 1 piece.
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We introduce modules over this ring in a natural way:

N ′ = ⊕n(M ′ ∩ InM)T n ⊆ ⊕nI
nMT n = M ⊕ ITM ⊕ I2T 2M . . . .

Observe that if mi generate M then they also generate ⊕nI
nT nM over the ring R(I), so it

follows that N ′ is finitely generated. Now, let x1, . . . , xm be generators of this module. By
breaking them into pieces we may assume they are homogeneous. Let now c be the maximum
of the degrees of xi. Then (M ′ ∩ InM)T n is the degree n piece of N ′ and we must be able
to write any element y of it using x1, . . . , xm:

y ∈ (IT )n−deg x1x1 + · · ·+ (IT )n−deg xmxm ∈ In−cT n−cNc.

Thus M ′ ∩ InM ⊆ In−c(IcM ∩M ′), the opposite inclusion is clear. �

Definition 1.18. The ring R[IT ] is called the Rees algebra of I.

1.3.2. Associated graded rings.

Definition 1.19. Let R be a ring and I be an ideal. The associated graded ring of I is
defined as

grI(R) :=
⊕
n≥0

In/In+1, where I0 := R.

Similarly, the associated graded module is

grI(M) :=
⊕
n≥0

InM/In+1M, where I0M := M.

The multiplication on grI(R) is inherited from R: if ā ∈ In/In+1, b̄ ∈ Im/Im+1 with
lifts a ∈ In, b ∈ Im then ab ∈ In+m and we define ā · b̄ = ab + In+m1. It is easy to
check that this does not depend on the lifts of ā, b̄. This ring structure also gives us that
grI(R) ∼= R[IT ]/IR[IT ].

Exercise 1.20. Confirm that grI(R) is a graded ring which is generated as an algebra in
degree 1 over R/I, its degree 0 part. In M is finitely generated, check that grI(M) is a
finitely generated grI(R)-module.

Via this exercise we may apply Theorem 1.15 to grI(M).

Corollary 1.21. Let (R,m) be a local ring, M be a finitely generated R-module, and I be
an ideal such that I + AnnM is m-primary. Then there is a polynomial PI(T ) ∈ Q[T ] and
an integer n0 such that `(M/InM) = PI(n) for n ≥ n0. The degree of this polynomial, called
the Hilbert–Samuel polynomial of I, is independent of I.

Moreover, if we let d to denote this common degree, then we can decompose

PI(n) =
d∑

k=0

ek(I)

(
n+ d− k
d− k

)
,

where ek(I) ∈ Z and e0 ≥ 1. In addition, for all large n,

`(InM/In+1M) =
d−d∑
k=1

ek(I)

(
n+ d− k − 1

d− k − 1

)
.
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Proof. We can replace R by R/AnnM , now I is m-primary and we may apply Theorem 1.15
in grI(M). Thus there is a polynomial Q(T ) and an integer n0 such that `(InM/In+1M) =
Q(n) for n ≥ n0. By Proposition 1.16 it has the required binomial decomposition. But then
for n ≥ n0

PI(n) = `(M/InM) = `(M/In0M) +
n−1∑
K=n0

Q(k)

is a polynomial of degree degQ+ 1 and has the required form due to the binomial identities.
Second, we prove that the degree of PI(n) does not depend on I. Observe that there exists

an integer c such that mc ⊆ I ⊆ m. Therefore, we have inequalities

`(M/mcn) ≥ `(M/InM) ≥ `(M/mnM).

Now, if `(M/mnM) = Pm(n) is a polynomial of degree d then `(M/mcnM) = Pm(cn) is also
a polynomial of degree d so it follows that PI(n) is also a polynomial of degree d. �

Remark 1.22. Let (R,m) be a local ring and I be an m-primary ideal. For an element
x ∈ R we will use x∗ to denote its image in grI(R). If I 6= 0 then there exists an integer
m such that x ∈ Im \ Im+1 (Im 6= Im+1 and ∩In = 0 [1, Corollary 10.19] by Nakayama’s
lemma). Then x∗ = x+ Im+1 as an element of Im/Im+1 ⊂ grI(R).

Exercise 1.23. Now let J be an arbitrary ideal. Show that J∗ = {x∗ | x ∈ J} is equal to

⊕k≥0
J∩Ik+Ik+1

Ik+1 . Show that grI(R/J) ∼= grI(R)/J∗.

1.4. Applications in the dimension theory. We now want to link the dimension of the
Hilbert polynomial and the Krull dimension. Let us denote dHilb(M) to be the degree of
Hilbert–Samuel polynomials `(M/InM), it does not depend on I by Corollary 1.21.

We present the following properties of this invariant.

Proposition 1.24. Let (R,m) be a Noetherian local ring and M,N be finitely generated
R-modules.

(1) If N →M is injective, then dHilb(N) ≤ dHilb(M).
(2) If M → N is surjective, then dHilb(N) ≤ dHilb(M).
(3) If x ∈ m is not a zerodivisor on M , then dHilb(M/xM) ≤ dHilb(M)− 1.

Proof. Let I be an arbitrary m-primary ideal. First, if M → N is surjective, then M/InM →
N/InN is surjective too, so the inequality on degrees follow. dHilb(M

′) ≤ dHilb(M).
Second, we have an exact sequence

0→ N/(InM ∩N)→M/InM →M/(InM +N)→ 0

which shows that `(N/(mnM ∩ N)) ≤ `(M/mnM). By the Artin–Rees lemma, there is a
constant c such that mnM ∩ N ⊆ mn−cN , so `(N/In−cN) ≤ `(M/InM) and the inequality
on degrees follows.

For the last assertion plug N = xM in the exact sequence above. Then by the Artin–Rees
lemma there is c > 0 for which we have inequalities

`(M/mnM)− `(M/(mnM +N)) ≥ `(N/mn−cN).
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Since the map M → N given by the multiplication by x is injective as x is not a zerodivisor,
it is an isomorphism. Therefore, if `(M/mnM) is given by the polynomial P (n) then

P (n)− `(M/(mnM +N)) ≥ P (n− c)
and it follows that

lim
n→∞

`(M/(mnM +N))

ndHilb(M)
= 0

so it is a polynomial of smaller degree. �

Lemma 1.25. Let (R,m) be a Noetherian local ring and suppose that I = (x1, . . . , xd) is an
m-primary ideal. Then dHilb(R) ≤ d.

Proof. Observe that the R/I-module In/In+1 can be generated by monomials in x1, . . . , xd
of degree n. Therefore, there is a surjection

⊕(n+d−1
d−1 )S/I → In/In+1 → 0

and `(In/In+1) ≤
(
n+d−1
d−1

)
`(S/I). Thus the Hilbert polynomial of S has degree at most d−1

and the assertion follows. �

Theorem 1.26 (The main theorem of dimension theory). Let (R,m) be a local ring. The
following 3 numbers coincide:

(1) The Krull dimension of R, dimR.
(2) The minimal number of elements of m that are needed to generate some m-primary

ideal, δ(R).
(3) The degree of the Hilbert–Samuel polynomial of any m-primary ideal, dHilb(R).

Proof. Let us prove that dHilb(R) ≥ dim(R). We use induction on d(R). In the base case,
`(mn/mn+1) = 0 for large n, so R is Artinian by the Nakayama lemma. Suppose that
dimR = L > 0 and consider a maximal chain of prime ideals

(1) p0 ( p1 ( · · · ( pL = m.

Choose elements xi ∈ pi\pi−1. Then by Proposition 1.24 dHilb(R/(pi, xi+1)) ≤ dHilb(R/pi)−1.
Since clearly dHilb(R/pi+1) ≤ dHilb(R/(pi, xi+1)) by surjection, we obtain that 0 ≤ dHilb(R)−
L = dHilb(R)− dimR.

Via Lemma 1.25 dHilb(R) ≤ δ(R), so it remains to show that δ(R) ≤ dim(R). We
use induction on dimR. The base case dimR = 0 is vacuous: 0 is already m-primary.
Now suppose dimR > 0. Since there are finitely many minimal prime ideals pi, by prime
avoidance we can find x1 ∈ m \∪ipi. Because any saturated chain of prime ideals must start
with a minimal prime, dimR/x1R ≤ dimR−1. By induction we can find at most dimR−1
elements x2, . . . , xd that generate an mR/x1R-primary ideal. Then the ideal x1, . . . , xd is
m-primary. This proves that d ≤ dimR. �

Corollary 1.27. Let (R,m) be a local ring and I be an m-primary ideal. Let G = grI(R)
and M = m/I ⊕ I/I2⊕ · · · . Then M is a maximal ideal of G and the height of M is dimR.

Proof. Clearly, G/M ∼= R/m so it is a maximal ideal. In order to compute its height, we
take an ideal G+ = ⊕i>0Gi in G. Since G/G+

∼= R/I the ideal G+ is M = m/I⊕ I/I2⊕· · · -
primary.
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We have isomorphism Gn
+/G

n+1
+
∼= In/In+1 which shows that the Hilbert polynomial of

G+ = ⊕i>0Gi in G is the same as the Hilbert polynomial of I in R. �

Corollary 1.28. Let k be a field. Then dim k[[x1, . . . , xd]] = d.

Proof. Note that R = k[[x1, . . . , xd]] is a local ring and grm(R) = k[x1, . . . , xd] graded by the
usual degree. Then Rn is a k-vector space with a basis of all monomials of degree n. The
number of such monomials is

(
n+d−1
d−1

)
(splitting n objects in d piles). �

Corollary 1.29 (Krull’s height theorem). Let R be a Noetherian ring and x1 . . . , xr ∈ R to
generate a proper ideal. Then any minimal prime p of (x1, . . . , xr) has height at most r.

Proof. We localize at p and reduce to the theorem. �

We now want to prove the corresponding statement for modules. This essentially reduces
to the case of rings, but requires a discussion.

Definition 1.30. If M is an R-module we define SuppM = {p ∈ SpecR | Mp 6= 0} and
AnnM = {x ∈ R | xM = 0}, it is easy to see that AnnM is an ideal.

Remark 1.31. 4 Clearly, x ∈ AnnM \ p then xMp = 0, so SuppM ⊆ V (AnnM) =
SpecR/AnnM . IfM is finitely generated we can easily prove that SuppM = SpecR/AnnM .
Namely, let x1, . . . , xn generate M . If Mp = 0, then by definition there are elements si /∈ p
such that sixi = 0. But then s1 · · · sn ∈ AnnM \ p.

In fact, if M is finitely generated, SuppM/xM = SuppM ∩ V (x) = V (AnnM + (x))
for any element x. We know that V (AnnM + (x)) = V (x) ∩ V (AnnM) by properties of
V (I). We also have that AnnM + (x) ⊆ AnnM/xM which gives one containment. For
the converse, let p be a prime containing x + AnnM . Then Mp 6= 0 and x ∈ pRp, so
by Nakayama’s lemma Mp/xMp = (M/xM)p is not zero. The assertion is now clear by
comparing chains in SuppM and SuppM ∩ V (x).

Corollary 1.32. Let (R,m) be a local ring and M be a finitely generated R-module. The
following 3 numbers coincide:

(1) The Krull dimension dimM of M , i.e., the Krull dimension of SuppM .
(2) The degree of the Hilbert–Samuel polynomial n 7→ M/InM for any ideal I such that

AnnM + I is m-primary.
(3) The minimal number δ(M) such that there are elements x1, . . . , xd ∈ m for which the

quotient module M/(x1, . . . , xd)M is Artinian.

Proof. Observe that replacing R by R′ = R/AnnM does not change any of these numbers
due to Remark 1.31 and the fact that `R(M/InM) = `R′(M/InM) as these quotient are
R′-modules. Now, by the same remark, dimM = dimR′ and δ(M) = δ(R′) due to the
topological characterization. Hence, dim(M) = δ(M).

Since M is finitely generated, there is a free module ⊕nR′ that surjects onto M . It follows
that `(M/mnM) ≤ n`(R′/mnR′), so dHilb(M) ≤ dHilb(R

′) = dimR′ = dimM . For the
opposite inequality5, let p be a minimal prime of R′ such that dimR′/p = dimR′. Since

4This is [1, Exercise 3.19]
5Alternatively, we can localize a prime filtration of M to observe that R′/p must appear as one of the

quotients. But then dHilb(R
′/p) ≤ dHilb(M) by Proposition 1.24.
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SuppM = SuppR′, this is also a minimal prime of M , hence an associated prime. Thus
we have an injection N = R′/p → M . By Proposition 1.24, dHilb(M) ≥ dHilb(R

′/p) =
dimR′/p = dimR′ = dimM . �

We record an important corollary.

Corollary 1.33. If (R,m) is a Noetherian local ring and M be a finitely generated R-module.
If x ∈ m then dimM − 1 ≤ dimM/xM ≤ dimM .

Moreover, dimM/xM = dimM if and only if x is contained in some minimal prime ideal
AnnM ⊆ p such that dimR/p = dimM .

Proof. First, we know thatM/xM is anR/AnnM -module so dimM/xM ≤ dimR/AnnM =
dimM . For the other inequality, suppose that dimM/xM < dimM − 1, then by applying
Corollary 1.32 in dimM/xM we get a contradiction with Corollary 1.32 in M as we will need
too few elements to get dimM/(x1, . . . , xd)M = 0 (Note that a finitely generated Artinian
module is annihilated by a power of the maximal ideal so its dimension is 0).

The second assertion follows from the formula SuppM/xM = V (AnnM + (x)). �

Definition 1.34. Let (R,m) be a local ring and M be a finitely generated R-module of
dimension d ≥ 1. We say that elements x1, . . . , xd form a system of parameters on M if
dimM/(x1, . . . , xd)M = 0.

We say that an element x ∈ R is a parameter on M if dimM/xM = dimM − 1.

We have proven that systems of parameters and parameter elements always exist.

1.5. Existence of multiplicity and first examples. Now, by combining Theorem 1.26,
Corollary 1.21, and Proposition 1.16 we derive the existence of multiplicity.

Theorem 1.35. Let (R,m) be a local ring, M be a finitely generated R-module, and I be an
ideal such that AnnM + I is m-primary. Then

lim
n→∞

(dimM)!
`(M/InM)

ndimM
= lim

n→∞
(dimM − 1)!

`(InM/In+1M)

ndimM−1 ∈ Z>0.

This limit is the leading coefficient of the Hilbert–Samuel polynomial multiplied by (dimM)!.

Remark 1.36. This limit might not be the Hilbert–Samuel multiplicity of M ! Recall that
we define it as

e(I;M) = lim
n→∞

(dimR)!
`(M/InM)

ndimR
.

Thus, the power in the denominator makes the limit to be 0 when dimR > dimM , this
will make multiplicity additive in short exact sequences. In order to work with the leading
coefficient of the Hilbert–Samuel polynomial of M , we can pass to R′ = R/AnnM and take
the multiplicity of M as an R′-module.

Exercise: Let (R,m) be a local ring, show that e(m) = e((m, T )) where the latter is the
maximal ideal of R[[T ]].

Since we defined the Hilbert function through the associated graded ring, the multiplicity
can be compute there. The following result is an easy consequence of the proof of Corol-
lary 1.27.
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Corollary 1.37. Let (R,m) be a Noetherian local ring and I be an m-primary ideal. Let
G = grI(R) and G+ = ⊕k≥1I

k/Ik+1 an ideal of G. Then e(I;R) = e(G+;G).

Example 1.38. Let R = k[[x1, . . . , xd]] and m = (x1, . . . , xd). Then R/mn+1 has a k-basis
of monomials of degree at most n. Therefore, `(R/mn+1) =

(
n+d
d

)
and the multiplicity is 1.

Example 1.39. Let R = k[[x1, . . . , xd]] and f be a homogeneous element. Note that Rn =
mn/mn+1 is spanned by all monomials of degree n. Observe that

0→ R(− deg f)
×f−→ R→ R/fR→ 0

is a map of graded R-modules as f is homogeneous. Thus we have an exact sequence on
homogeneous components for n > deg f

0→ Rn → Rn+deg f → (R/fR)n+deg f → 0.

Thus we can compute the Hilbert function of R/fR as
(
n+deg f+d−1

d−1

)
−
(
n+d−1
d−1

)
. Note that

we may expand(
n+m

d

)
=

(n+m) · · · (n+m− d+ 1)

d!
=
nd

d!
+
d(2m− d+ 1)

2d!
nd−1 +O(nd−2)

This implies that dimk(R/fR)n+deg f = deg fnd−2/(d− 2)! +O(nd−3), so e(R/fR) = deg f .

1.5.1. Regular rings.

Definition 1.40. A Noetherian local ring (R,m) is regular if there exist elements x1, . . . , xd,
d = dimR such that m = (x1, . . . , xd).

Note that the maximal ideal cannot be generated by less than d elements by Krull’s height
theorem, so this is an extremal condition.

Examples: a field, a DVR ([1, Chapter 9]) are regular local rings. This property is
preserved by adding variables, so K[[T1, . . . , Td]], where K is a field (or a DVR), is a regular
local ring.

We proved that the multiplicity of a power series ring is 1 and this extends to regular
rings.

Corollary 1.41. Let (R,m) be regular local ring. Then e(m) = 1 and R is a domain.

Proof. Let k = R/m and m = (x1, . . . , xd). We claim that grm(R) ∼= k[T1, . . . , Td] (a polyno-
mial ring!) by sending Ti 7→ xi + m2. We know that this map is surjective since xi generate
grm(R), and there cannot be a nonzero polynomial in the kernel since the dimensions match.
Thus the computation reduces to combinatorics as in Example 1.38. Last, we observe that
R is a domain because grm(R) is a domain (exercise!6). �

Exercise: extend Example 1.39 to an arbitrary regular local ring (R,m) by showing that
e(m, R/fR) = ord f , where ord(f) := min{n | f ∈ mn}. Hint: use that grm(R/fR) =
grm(R)/f ∗ grm(R), where f ∗ is the image of f in grm(R).

6[1, Lemma 11.23]
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